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INTRODUCTION 

This study was designed and executed to test the accuracy of the heart rate monitoring 
technology—PurePulse™—in fitness trackers manufactured by Fitbit, Inc. (“Fitbit”) (together, the 
“devices” or the “PurePulse Trackers”) over a wide range of activities and exercises.  We tested both the 
Fitbit Charge HR™ (“Charge HR”) and the Fitbit Surge™ (“Surge”) by comparing hundreds of thousands 
of heart rate readings to a time-synced electrocardiogram (“ECG”).  Based on our analysis of those 
readings, we conclude that the Fitbit PurePulse Trackers do not provide a valid measure of the users’ 
heart rate and cannot be used to provide a meaningful estimate of a user’s heart rate, particularly during 
moderate to high intensity exercise.   

EXECUTIVE SUMMARY AND INTERPRETATION 

1. The Charge HR exhibited an aggregate mean bias of -6.1 beats per minute (bpm) and a mean 
absolute differential of 12.2 bpm.  During higher exercise intensities, the mean bias was -12.5 
bpm and the mean absolute difference increased to 15.5 bpm.  In other words, during moderate 
to high intensity exercise, the Charge HR recorded a heart rate that differed from the ECG by an 
average of 15.5 bpm. 
 

2. The Surge exhibited a mean bias of -11.6 bpm and a mean absolute differential of 15.6 bpm.  
During higher exercise intensities, the mean bias was -20.8 bpm and the mean absolute 
differential increased to 22.8 bpm.  In other words, during moderate to high intensity exercise, the 
Surge recorded a heart rate that differed from the ECG by an average of 22.8 bpm. 
  

3. Together, the PurePulse Trackers exhibited an aggregate mean bias of -8.9 bpm and a mean 
absolute differential of 13.9 bpm when compared against ECG.  During higher exercise intensities 
(as described above), the mean bias was -16.8 and the mean absolute difference increased to 
19.2 bpm. In other words, during moderate to high intensity exercise, the PurePulse Trackers 
recorded a heart rate that differed from the ECG by an average of 19.2 bpm.   
 

4. In addition to being inaccurate, the PurePulse Trackers are also inconsistent.  Statistical analysis 
indicated a correlation strength of r= 0.85 between the time-synced Surge and Charge HR heart 
rates in aggregate.  There was a mean differential of 10.0 bpm between the PurePulse Trackers.  
However, when comparing the trackers using data above the combined mean value of 124 bpm 
(i.e. heart rate range associated with lower intensity exercise), the correlation between the 
PurePulse Trackers weakened substantially to r= 0.46 demonstrating greater inconsistencies 
between the two trackers. The mean differential increased to 12.5 bpm.  The correlation during 
rest and low intensity conditions (<125 bpm) also showed inconsistent heart rate measurements 
between the two device with only a moderate strength correlation (r= 0.76) and a mean difference 
of 7.23 bpm. 
 

5. The PurePulse Trackers do not accurately measure a user’s heart rate, particularly during 
moderate to high intensity exercise, and cannot be used to provide a meaningful estimate of a 
user’s heart rate.  
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A. SPECIFIC AIMS 

A.1. Specific Aim: In 43 healthy subjects, we tested the accuracy by which the Fitbit Surge and Charge 
HR wearable fitness trackers and the integrated PurePulse™ technology computes heart rate across a 
number of structured laboratory-based and less structured free-living exercise tasks. 

A.2. Hypothesis: The result of this study is anticipated to determine the validity of the Fitbit Surge and 
Charge HR wearable fitness trackers for heart rate measurements in reference to the criterion measure 
electrocardiograph (ECG). 

B. BACKGROUND AND SIGNFICANCE 

Wearable physical activity monitors have been commercially available for many years1. Initially 
developed to augment personal fitness and weight loss regimens with basic quantitative data, the newest 
generation of devices provides feedback on many variables related to individuals’ nutrition, exercise and 
sleep.  As the technology and functionality of these devices continues to progress, the potential 
applications have also expanded to include medical surveillance, pervasive health care and mobile 
health-wellness monitoring. 

The search for a practical and accurate method to assess energy expenditure continues to focus 
on wearable sensor technologies. It is believed that classification of physical activity by either improved 
analysis through accelerometer metrics or incorporating additional physiologic variables (e.g. body 
temperature, skin galvanic response, heart rate, etc.) may allow activity-specific prediction algorithms to 
more accurately reflect real-life energy expenditure. This has fueled the adoption of more recent 
commercially-available monitors using multiple-sensing technologies that have been shown to outperform 
existing monitors that use solely basic accelerometer data to infer movement and subsequent energy 
expenditure2. 

The Fitbit Surge and Charge HR wearable fitness trackers are an example of a current generation 
device that integrates reflective photoplethysmography to compute heart rate. Fitbit’s PurePulse™ feature 
is its proprietary heart rate monitoring system.  We understand, but have not independently verified, that 
the heart rate monitoring technology in the PurePulse Trackers is identical.  

As wearables become more prevalent, the accuracy of the physiological data they provide 
increases in importance. With the recent development of new types of sensors there has been a steady 
focus on improving overall device performance, i.e., reliability and validity of measurements.  
Notwithstanding, there is a scarcity of rigorous, scientifically-based validation studies on physiological 
measurement accuracy when compared to a gold-standard. These devices are no exception, hence this 
study’s proposed purpose is to compare heart rate (HR) measures and validate them against a criterion 
measure (ECG). 

 

C. RELEVANT & PREVIOUS VALIDATION STUDIES1 

C.1. Validation of wearable multi-sensor biofeedback technology for heart rate and energy expenditure 
tracking. Jo E, Dolezal BA, Lewis K, Directo D.  (in preparation for publication). 

Our laboratory conducted a validation study on two multi-sensor activity trackers used to monitor 
heart rate (via optical sensors) and energy expenditure (via multi-sensor technology).  Subjects 
performed a series of exercise tasks while heart rate data was simultaneously acquired from the Basis 
Peak, Fitbit Charge HR, and ECG (criterion measure). The Basis Peak demonstrated strong correlation 
(r=0.92) with ECG and a mean bias of -2.53 bpm when examining data in aggregate.  The Basis Peak 
maintained relatively excellent accuracy across all exercise tasks, and met the validation criteria for 
consumer-use heart rate monitors. 

                                                 
1 Per Federal Rule of Civil Procedure 26(a)(2), the CVs and list of relevant publications of Drs. Jo and 

Dolezal are attached as Exhibits A and B.  Neither Dr. Jo nor Dr. Dolezal has previously testified as an 
expert.  The fees paid for this study include $21,750 to Dr. Jo, $12,000 to Dr. Dolezal, and $2,000 to a 
laboratory assistant.  Costs and supplies, including participation fees for the study subjects, totaled 
$8,100. 
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C.2. Validity of two commercial grade bioelectrical impedance analyzers for measurement of body fat 
percentage. Dolezal BA, Lau M, Abrazado M, Storer TW, Cooper CB. Journal of Exercise Physiology 
online 2013; 16(4): 74-83 

Our laboratory has validated an octapolar, multi-frequency bioelectrical impedance analyzer (BIA) 
against the gold standard of dual x-ray absorptiometry (DXA) in the assessment of body composition (% 
body fat).  Correlations with DXA were extremely strong (r=0.98) and the data suggest this BIA instrument 
offers superior accuracy compared with other methods of BIA in assessing percent body fat. 

C.3. Validation of a Heart Rate Derived from a Physiological Status Monitor-Embedded Compression 
Shirt against Criterion ECG. Dolezal BA, Boland DM, Carney J, Abrazado M, Smith DL, Cooper CB. 
Journal of Occupational and Environmental Hygiene 2014; 11:12, 833-39 

Our laboratory has validated a Physiological Status Monitor (PSM)-embedded compression shirt 
against a criterion standard laboratory ECG in the measurement of heart rate when worn concurrently 
with structural firefighting personal protective equipment during four simulated firefighting activities. These 
findings demonstrated that the PSM-embedded compression shirt provides a valid measure of HR during 
simulated firefighting activities when compared with a standard 12-lead ECG. 

 

D. METHODS 

D.1. Study Design: This investigation was a prospective study of 43 healthy adults (22 males and 21 
females) within the Los Angeles and Orange County communities.  Participants visited the Cal Poly 
Pomona (CPP) Human Performance Research Laboratory for a single visit.  An initial assessment 
included anthropometric measures (height and body weight) after which subjects were fitted with a Fitbit 
Charge HR on one wrist and the Fitbit Surge on the opposite wrist.  Half of the subject pool wore the 
Charge HR on the dominant wrist and the Surge on the non-dominant wrist.  The other half of the subject 
pool wore the Charge HR on the non-dominant wrist and the Surge on the dominant wrist.  This 
counterbalancing strategy was implemented to avoid any potential confounding factors associated with 
the wrist on which the devices were placed.  The mobile application settings for each watch were 
adjusted appropriately for each subject and the wrist the device was worn.  Each device was fitted 
according to manufacturer instructions and with full battery charge prior to testing. A previously validated 
and calibrated heart rate measurement system (Zephyr Technology, BioHarness) accompanied with 
electrocardiograph (ECG) was used to provide criterion measures of HR using ECG R-R intervals8,9.  The 
BioHarness has been previously validated with high agreement to 12-lead and 3-lead ECG8,9.  The two 
Fitbit devices were time synchronized with the criterion ECG measurement.  Time-synced data acquisition 
methods for each device is described below in section D.3.3. 

The subjects were assigned to perform the tasks below in the listed order for 5 minutes while heart rate 
data from each device (ECG, Charge HR, and Surge) were concurrently acquired. The total time of 
testing was 65 minutes for each subject. The exercise tasks were reflective of activities presented in Fitbit 
advertisements. 

 
Free-living Setting (outdoors)  

1. Standing Rest 
2. Self-paced jog: Participants will jog on a predetermined course consisting of flat and hilly 

surfaces. 
3. Standing Rest 
4. Jump roping: Participants will jump rope at a self-selected cadence.  

Laboratory Setting  

1. Seated Rest 
2. Treadmill Jogging: Participants will jog at a self-selected pace a motorized treadmill (4.5 to 5.9 

mph). 
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3. Seated Rest 
4. Treadmill Running: Participants will run at a self-selected pace a motorized treadmill (> 6.0 

mph). 
5. Seated Rest 
6. Stair Climbing: Participants will walk, jog, or run up a flight of stairs and return repeatedly for 1 

minute intervals up to 5 minutes total.  
7. Seated Rest 
8. Plyometrics: Participants will perform 5 minutes of various plyometric (fast movement) exercises 

with each exercise performed in 1 minute intervals.  
9. Seated Rest 

D.2. Subjects: A randomized sample of 43 subjects (21 males and 22 females) was utilized for this study.  
The mean age, body weight, and height of the subject pool was 23.23 ± 3.46 years, 168.43 ± 9.76 cm 
(height), and 70.05 ± 14.33 kg (weight), respectively.  Recruitment of subjects was performed by posting 
flyers on the CPP campus as well as by mass email solicitations. Interested individuals were provided 
with a full overview of the study procedures as well as the study consent form. Informed consent was 
obtained after discussing the study procedures in detail, including the voluntary nature of participation and 
notification that the subject can withdraw at any time. Upon the subject’s agreement to participate, a 
signed copy was given to the subject.  The study was approved by the CPP Institutional Review Board.  
Individuals who reported or exhibited any significant medical diagnoses, including cardiovascular or 
pulmonary disease that may limit ability to exercise or increase the cardiovascular risk of exercising or 
confound the interpretation of results were excluded from participation. 

D.3. Experimental Procedures 

D.3.1. Screening: All subjects completed a pre-participation medical questionnaire (PAR-Q) and a 
habitual physical activity questionnaire. 

D.3.2. Electrocardiograph (ECG):  We used a previously-validated and calibrated heart rate 
measurement system (Zephyr Technology, BioHarness) accompanied with a single channel 
electrocardiograph (ECG) sensor and circuitry to provide criterion measures of HR using ECG R-
R interval calculations at a sampling rate of 250 Hz8,9.  The BioHarness is a wearable multi-
sensor system that acquires, logs, visualizes, and transmits biometrics (e.g. ECG and HR) via 
Bluetooth-enabled devices and mobile computer application (app). Following all measurements, 
data stored on the app was uploaded to a secure server and subsequently downloaded for 
second-by-second HR data analysis.  The BioHarness has been previously validated with high 
agreement to 12-lead and 3-lead ECG8-9. The rationale for using the BioHarness ECG sensor as 
opposed to a traditional 12-lead ECG is as follows: (1) a 12-lead ECG utilizes 10 electrodes 
placed on the upper torso mostly around the left (anatomical perspective) chest.  Therefore, 
female subjects especially, may experience discomfort as partial disrobing would be required for 
electrode placement.  The BioHarness system integrates ECG into a less cumbersome chest 
strap device that is placed underneath the pectoral region and does not require disrobing, and (2) 
with the dynamic nature of movements associated with the exercise tasks, the use of a wired 12-
lead ECG would be highly impractical and unfeasible.  R-R interval and HR data will be acquired 
wirelessly using native Android-based software. 

D.3.3. Fitbit Charge HR and Surge: For each subject, we positioned the Charge HR and Surge of 
appropriate size on separate wrists and in accordance to manufacturer instructions. Half of the 
subject pool wore the Charge HR on the dominant wrist and the Surge on the non-dominant wrist.  
The other half of the subject pool wore the Charge HR on the non-dominant wrist and the Surge 
on the dominant wrist.  We implemented this counterbalancing strategy to avoid any potential 
confounding factors associated with the wrist on which the devices are placed.  The mobile 
application settings for each watch were adjusted appropriately for each subject.  Each device 
was confirmed to have full battery charge prior to testing.  During testing, the “track exercise” 
function for the Fitbit devices was used.  This function allows for time-synced GPS and HR data 
acquisition.  Upon completion of the testing protocol, the exercise metrics during the “tracked” 
exercise was uploaded to the Fitbit servers. Subsequently, the GPS (.tcx) file linked to the 
“tracked” exercise was downloaded from the Fitbit online dashboard and imported into a Microsoft 
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Excel spreadsheet.  The spreadsheet displayed time-synced, second-by-second GPS and HR 
data.  The GPS data was discarded while the HR data was subsequently used for analysis. 

D.3.4. Time Syncing and Data Processing: All time stamps corresponding to each HR 
measurement from each device were linked to Coordinated Universal Time (UTC).  The start and 
end times for each testing session were recorded and used to identify the time/data points for 
analysis.  For some subjects, the Fitbit data sets failed to register a variable number of time 
points.  This may be due to incidences during which the Fitbit device failed to capture a sufficient 
signal for HR determination.  Because the precise reason for these absent heart rate readings 
cannot be conclusively determined, these data points were not included in the primary analysis. 
As a secondary method of data acquisition, we recorded heart rate data manually using the value 
presented on the watch interface.  At each minute of testing, the subject was prompted to read 
the heart rate value indicated on the Charge HR watch interface and researchers hand recorded 
the data.  Simultaneously, researchers recorded the heart rate value presented on the external 
monitors linked to the ECG as well as on the Surge.  This secondary method serves as an 
alternate approach and may provide value for practical inference since consumers utilize similar 
procedures to obtain their own heart rate values.  

D.3.5. Statistical Analyses: Three levels of statistical analysis were implemented to substantiate 
the level of validity of the Fitbit devices in reference to ECG: 

A) First, we used a Pearson Product-Moment Correlation analysis to determine the 
strength of relationship between ECG and each of the Fitbit devices (i.e. ECG vs. Charge 
HR and ECG vs. Surge) and whether the relationship was statistically significant.  A 
significant correlation was determined if the p-value was less than 0.05 while the strength 
of correlation was determined by the correlation coefficient (r).  

*In simplified terms, a correlation analysis would provide information on how well 
or poorly the heart rate values from the Fitbit relate to the values acquired by 
ECG for each given time point of measurement. A perfect correlation 
(represented by an r-value of 1) indicates that the heart rate values from the Fitbit 
and ECG were the same for each measurement time point.  This would indicate 
that the Fitbit is completely accurate in reference to the ECG.  When the heart 
rate values from the Fitbit and ECG do not match well for each time point, the 
strength of the correlation weakens (represented by a r-value further away from 1 
and closer to 0).  The term “significance” is a statistical term that simply indicates 
that the observed correlation was not simply due to chance.  In this case, the 
data reveals that the Fitbit devices are inaccurate.   

By itself, however, this metric can conceal significant discrepancies in heart rate 
readings. For example, if an ECG records bpm of 150, 160, and 170 at three 
discrete moments in time, and a Fitbit device records bpm of 100, 110, and 120, 
respectively, for those same moments, the devices would demonstrate a perfect 
correlation,(r= 1.0) even though the actual readings were far apart.  Thus, even if 
the correlation is strong, other means must be referenced as well to determine 
the devices’ validity.   

B) Second, we used a paired sample T-Test to statistically compare the mean/average 
heart rate between ECG and each of the Fitbit devices.  A p<0.05 will indicate a 
significant difference between the mean HR acquired by ECG vs. either Fitbit device. 

*This statistical test is intended to compare the average heart rate from the ECG 
to the average heart rate value from the Fitbit devices.  If the two mean values 
differed significantly (i.e. statistical significance represented by a p-value less 
than 0.05), it may be implied from a statistical perspective that the two devices 
produce discrepant heart rate values.  

By itself, this analytical tool can also undervalue the inaccuracy of the devices.  
For example, if an ECG shows bpm of 150, 150, 150, and 150, and the Fitbit 
device shows bpm of 125, 125, 175, and 175 for the same points in time, the 
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device would register a mean bias of 0 over this time period, notwithstanding the 
significant inaccuracy of each reading. Thus, where, as here, the Fitbit devices 
have a tendency to both under record, and over record, the mean bias may 
underestimate the extent of the inaccuracy.   

C) Third, we used the Bland-Altman method to further assess the agreement between the 
Fitbit devices and ECG and whether the differences vary in a systematic or ambiguous 
way over the range of measurements. The mean bias between Fitbit and ECG (=Fitbit 
HR – ECG HR) and the 95% limits of agreement (LoA; LoA = mean difference ± 1.96 
standard deviation of the difference) was identified. Bland-Altman plots demonstrate the 
Fitbit vs. ECG (Fitbit HR minus ECG HR) heart rate difference scores against the mean 
of the heart rate measurements from both Fitbit and ECG. 

*This analysis provides insight on how well or poorly the Fitbit agrees with ECG 
in terms of heart rate.  More specifically, the mean bias is calculated by 
subtracting ECG HR from the time-corresponding Fitbit HR and then averaging 
those computed values.  The mean bias score will indicate how much the Fitbit 
underestimates or overestimates (bias) heart rate in reference to ECG.  The 95% 
limits of agreement incorporate an upper and lower value.  This range 
encompasses 95% of the individual difference scores (= Fitbit HR – ECG HR) 
within the sample.  This can provide information as to the range by which the 
Fitbit deviates from ECG. Moreover, the range may reflect the tendencies of the 
Fitbit in terms of heart rate measurement.  For example, if the upper limit of 
agreement is +10 and the lower limit of agreement is -45, then it can be 
reasonably argued that the Fitbit tends to underestimate since -45 is further away 
from 0 (0= no difference between devices) than +10.  Also, a bias may be 
considered systematic if the limits of agreement were closer together.  In such 
case, the Fitbit may be used interchangeably with ECG since 95% of the 
individual difference scores are within a relatively small range.  If the limits of 
agreement were wide, then the bias is more ambiguous or sporadic.  In this case, 
the Fitbit may not be considered interchangeable with ECG since the bias is not 
systematic.     

 

D) Fourth, we calculated the absolute difference between the Fitbit devices and the ECG.  

*This measurement describes the difference in bpm between the Fitbit devices 
and the ECG, irrespective of whether the devices recorded a bpm over or under 
the actual heart rate, as measured by an ECG.  For example, if an ECG records 
a heart rate of 125, Fitbit device readings of 100 and 150 would both render an 
absolute difference of 25 bpm.         
     

All four levels of analysis were implemented on aggregate HR data, HR data above the 
mean ECG HR, and HR data below the mean ECG HR. For ECG vs. Charge HR 
analysis, a total of 127,215 pairs of data were utilized while for the ECG vs. Surge 
analysis, a total of 132,263 pairs of data were utilized.  The discrepancy in data set size 
was due to incidences in which either Fitbit device failed to register a HR for a given time 
point as described above. All results are reflected as mean value ± standard deviation.  
Previous validation studies8,9,11,12 have provided validity criteria for heart rate 
measurement as: 1) a standard error of the estimate (SEE) less than 5 beats/min, 2) a 
correlation between ECG-derived heart rate and the heart rate measured by the test 
device of r=0.90 or greater, and 3) a mean bias less than 3 beats/min.  These criteria 
were used to determine validity of the Fitbit devices in this study.  
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E. RESULTS 

E.1. ECG vs. Fitbit Charge HR 

E.1.1. Aggregate Data: When examining all time-synced ECG and Charge HR heart rate data in 
aggregate (n= 127,215 pairs), there was a significant (p<0.001) and moderately strong positive 
correlation between ECG and Charge HR (r=0.85) (Table 1, Figure 1).  The mean HR from the 
Charge HR (126.78 ± 29.94 bpm) significantly (p<0.001) differed from the mean ECG HR (132.87 
± 33.12 bpm) (discrepancy of 9.46 ± 10.62% or 12.19 ± 10.62 bpm) (Table 1).  The Charge HR 
exhibited a mean bias of -6.09 ± 17.71 bpm (95% LoA 28.63, -40.81) in reference to ECG 
criterion measure (Table 1, Figure 2). 

 

Figure 1.  Relationship between time-synced ECG and Fitbit Charge heart rate.  

 
Figure 2. Bland-Altman Plot indicating mean difference in heart rate detection between the Charge HR and ECG criterion 
measure. Mean bias and limits of agreement (95% LoA) are shown. 
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E.1.2. HR Data above mean ECG HR (>132 bpm): Time synced heart rate data above the mean 
ECG HR (>132 bpm; n=63,888 pairs) were analyzed.  During conditions in which the ECG HR 
(true HR) exceeded 132 bpm, there was a significant (p<0.001) and moderately weak positive 
correlation between ECG and Charge HR (r=0.48) (Table 1, Figure 3).  In addition, the mean HR 
from the Charge HR (148.35 ± 20.10 bpm) significantly (p<0.001) differed from the mean ECG 
HR (160.83 ± 17.03 bpm) (discrepancy of 10.35 ± 11.62% or 15.48 ± 11.62 bpm) (Table 1).  The 
Charge HR exhibited a mean bias of -12.48 ± 19.07 bpm (95% LoA 24.90, -49.86) compared to 
ECG during higher (>132 bpm) ECG/true heart rate conditions (e.g. high intensity exercise) 
(Table 1, Figure 4). 

 
Figure 3. Relationship between time-synced ECG and Fitbit Charge heart rate during high ECG-measured heart rate range 
(>132 bpm) 

 

 
Figure 4. Bland-Altman plot indicating mean difference in heart rate detection between the Charge HR and ECG criterion 
measure.  Mean bias and limits of agreement (95% LoA) are shown. 
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E.1.3. HR Data below mean ECG HR (<133 bpm): Time synced heart rate data below the mean 
ECG HR (<133 bpm; n=63,327 pairs) were analyzed.  During conditions in which the ECG HR 
(true HR) was below 133 bpm, there was a significant (p<0.001) and moderate positive 
correlation between ECG and Charge HR (r=0.78) (Table 1, Figure 5).  In addition, the mean HR 
from the Charge HR (105.02 ± 21.22 bpm) significantly (p<0.001) differed from the mean ECG 
HR (104.67 ± 18.10 bpm) (discrepancy of 8.56 ± 9.42% or 8.86 ± 9.42 bpm) (Table 1).  The 
Charge HR exhibited a mean bias of 0.36 ± 13.44 bpm (95% LoA 18.82, -18.13) compared to 
ECG during lower (<133 bpm) ECG/true heart rate conditions (e.g. low intensity exercise) (Table 
1, Figure 6). 

 
Figure 5. Relationship between time-synced ECG and Fitbit Charge heart rate during low ECG-measured heart rate range 
(<133 bpm) 

 

 

Figure 6. Bland-Altman plot indicating mean difference in heart rate detection between the Fitbit Charge HR (Charge HR) 
and ECG criterion measure. Mean bias and limits of agreement (95% LoA) are shown. 
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Parameter 
Aggregate Data 

(n=127,215) 

Data above ECG HR 
>132bpm 

(n=63,888) 

Data below ECG HR 
<133bpm 

(n=63,327) 

Charge HR Mean HR 
(bpm ± SD) 

126.78 ± 29.94* 148.35 ± 20.10* 105.02 ± 21.22* 

ECG Mean HR 
(bpm ± SD) 

132.87 ± 33.12 160.83 ± 17.03 104.67 ± 18.10 

Mean Absolute Difference 
(bpm ± SD) 

12.19 ± 10.62 15.48 ± 11.62 8.86 ± 9.42 

Mean Percent Difference 
(% ± SD) 

9.46 ± 10.62 10.35 ± 11.62 8.56 ± 9.42 

Correlation (r) 0.85^ 0.48^ 0.78^ 

Mean Bias 
(bpm ± SD) 

-6.09 ± 17.71 
(95% CI -6.19, -5.99) 

-12.48 ± 19.07 
(95% CI -12.63, -12.33) 

0.36 ± 13.44 
(95% CI 0.25, 0.46) 

95% Limits of Agreement 
(Upper, Lower) 

28.63, -40.81 24.90, -49.86 26.71, -25.99 

Standard Error of the 
Estimate (SEE) 

15.92 17.61 13.35 

^ Significant (p<0.001) correlation 
* Significantly (p<0.001) different than ECG 

Table 1. Summary of heart rate comparison data between Charge HR and ECG.  

E.2. ECG vs. Fitbit Surge 

E.2.1. Aggregate Data:  When examining all time-synced ECG and Surge heart rate data in 
aggregate (n= 132,263 pairs), there was a significant (p<0.001) and moderately strong positive 
correlation between ECG and Surge (r=0.77) (Table 2, Figure 7).  The mean HR from the Surge 
(121.58 ± 27.78 bpm) significantly (p<0.001) differed from the mean ECG HR (133.163 ± 32.64 
bpm) (discrepancy of 11.98 ± 13.21% or 15.63 ± 13.21 bpm) (Table 2).  The Surge exhibited a 
mean bias of -11.58 ± 21.03 bpm (95% LoA 29.64, -52.80) in reference to ECG criterion measure 
(Table 2, Figure 8). 

 
Figure 7.  Relationship between time-synced ECG and Fitbit Surge heart rate. 
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Figure 8. Bland-Altman plot indicating mean difference in heart rate detection between the Fitbit Surge and ECG criterion 
measure. Mean bias and limits of agreement (95% LoA) are shown. 

 

E.2.2. HR Data above mean ECG HR (>132 bpm): Time synced heart rate data above the mean 
ECG HR (>132 bpm; n=67,668 pairs) were analyzed.  During conditions in which the ECG HR 
(true HR) exceeded 132 bpm, there was a significant (p<0.001) and weak positive correlation 
between ECG and Surge (r=0.28) (Table 2, Figure 9).  In addition, the mean HR from the Surge 
(139.50 ± 22.00 bpm) significantly (p<0.001) differed from the mean ECG HR (160.308 ± 16.46 
bpm) (discrepancy of 15.77 ± 15.53% or 22.75 ± 15.53 bpm) (Table 2).  The Surge exhibited a 
mean bias of -20.81 ± 23.54 bpm (95% LoA 25.33, -66.95) compared to ECG during higher (>132 
bpm) ECG/true heart rate conditions (e.g. high intensity exercise) (Table 2, Figure 9). 

 

 
Figure 9. Relationship between time-synced ECG and Fitbit Surge heart rate during high ECG-measured heart rate range 
(>132 bpm) 
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Figure 10. Bland-Altman plot indicating mean difference in heart rate detection between the Surge and ECG criterion 
measure.  Mean bias and limits of agreement (95% LoA) are shown. 

 

E.2.3. HR Data below mean ECG HR (<133 bpm): Time synced heart rate data below the mean 
ECG HR (<133 bpm; n=64,620 pairs) were analyzed.  During conditions in which the ECG HR 
(true HR) was below 133 bpm, there was a significant (p<0.001) and moderately strong positive 
correlation between ECG and Surge (r=0.80) (Table 2, Figure 11).  In addition, the mean HR from 
the Surge (102.83 ± 19.61 bpm) significantly (p<0.001) differed from the mean ECG HR (104.74 
± 17.83 bpm) (discrepancy of 8.01 ± 8.60% or 8.17± 8.60 bpm) (Table 2).  The Surge exhibited a 
mean bias of -1.91 ± 11.93 bpm (95% LoA 21.47, -25.30) compared to ECG during lower (<133 
bpm) ECG/true heart rate conditions (e.g. low intensity exercise) (Table 2, Figure 12). 

 
Figure 11. Relationship between time-synced ECG and Fitbit Surge heart rate during low ECG-measured heart rate range 
(<133 bpm) 
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Figure 12. Bland-Altman plot indicating mean difference in heart rate detection between the Fitbit Surge and ECG criterion 
measure. Mean bias and limits of agreement (95% LoA) are shown. 

 

Parameter 
Aggregate Data 

(n=132,263) 

Data above ECG HR 
>132bpm 

(n=67,668) 

Data below ECG HR 
<133bpm 

(n=63,327) 

Surge Mean HR 
(bpm ± SD) 

121.581 ± 27.78* 139.50 ± 22.00* 102.83 ± 19.61* 

ECG Mean HR 
(bpm ± SD) 

133.16 ± 32.64 160.31 ± 16.46 104.74 ± 17.83 

Mean Absolute Difference 
(bpm ± SD) 

15.63 ± 13.21 22.75 ± 15.53 8.17 ± 8.60 

Mean Percent Difference 
(% ± SD) 

11.98 ± 13.21 15.77 ± 15.53 8.01 ± 8.60 

Correlation (r) 0.77^ 0.28^ 0.80^ 

Mean Bias 
(bpm ± SD) 

-11.58 ± 21.03 
(95% CI -11.70, -11.47) 

-20.81 ± 23.54 
(95% CI -20.00, -20.63) 

-1.91 ± 11.94 
(95% CI -2.01, -1.82) 

95% Limits of Agreement 
(Upper, Lower) 

29.64, -52.80 25.33, -66.95 21.47, -25.30 

Standard Error of the 
Estimate (SEE) 

17.75 21.14 11.74 

^ Significant (p<0.001) correlation 
* Significantly (p<0.001) different than ECG 

Table 2. Summary of heart rate comparison data between Surge and ECG.  
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E.3. ECG vs. Fitbit Combined (PurePulse Trackers) 

E.3.1. Aggregate Data:  When examining all time-synced ECG and PurePulse Tracker data in 
aggregate (n= 259,478 pairs), there was a significant (p<0.001) and moderately strong positive 
correlation between ECG and PurePulse Trackers (r=0.80) (Table 3, Figure 13).  The mean HR 
from the PurePulse Trackers (124.13 ± 28.97 bpm) significantly (p<0.001) differed from the mean 
ECG HR (133.02 ± 32.88 bpm) (discrepancy of 10.74 ± 12.08% or 13.94 ± 12.08 bpm) (Table 3).  
The PursePulse Trackers exhibited a mean bias of -8.89 ± 19.67 bpm (95% LoA 29.66, -47.44) in 
reference to ECG criterion measure (Table 2, Figure 14).

 
Figure 13.  Relationship between time-synced ECG and PurePulse Tracker heart rate. 

 
Figure 14. Bland-Altman plot indicating mean difference in heart rate detection between the PurePulse Trackers and ECG 
criterion measure. Mean bias and limits of agreement (95% LoA) are shown. 

 

E.3.2. HR Data above mean ECG HR (>132 bpm): Time synced heart rate data above the mean 
ECG HR (>132 bpm; n=131,531 pairs) were analyzed.  During conditions in which the ECG HR 
(true HR) exceeded 132 bpm, there was a significant (p<0.001) and weak positive correlation 
between ECG and PursePulse Trackers (r=0.37) (Table 3, Figure 15).  In addition, the mean HR 
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from the PurePulse Trackers (143.80 ± 21.56 bpm) significantly (p<0.001) differed from the mean 
ECG HR (160.57 ± 16.74 bpm) (discrepancy of 13.14 ± 14.04% or 19.22 ± 14.04 bpm) (Table 3).  
The PurePulse Trackers exhibited a mean bias of -16.77 ± 21.89 bpm (95% LoA 26.13, -59.67) 
compared to ECG during higher (>132 bpm) ECG/true heart rate conditions (e.g. higher intensity 
exercise) (Table 3, Figure 16). 

 
Figure 15. Relationship between time-synced ECG and PurePulse Tracker heart rate during high ECG-measured heart rate 
range (>132 bpm) 

 

 
Figure 16. Bland-Altman plot indicating mean difference in heart rate detection between the PurePulse Trackers and ECG 
criterion measure. Mean bias and limits of agreement (95% LoA) are shown. 

 

E.3.3. HR Data below mean ECG HR (<133 bpm): Time synced heart rate data below the mean 
ECG HR (<133 bpm; n=127,947pairs) were analyzed.  During conditions in which the ECG HR 
(true HR) was below 133 bpm, there was a significant (p<0.001) and moderately strong positive 
correlation between ECG and Surge (r=0.79) (Table 3, Figure 17).  In addition, the mean HR from 
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the PurePulse Trackers (103.91 ± 20.45 bpm) significantly (p<0.001) differed from the mean ECG 
HR (104 ± 17.96 bpm) (discrepancy of 8.28 ± 9.02% or 8.51± 9.02 bpm) (Table 3).  The 
PurePulse Trackers exhibited a mean bias of -0.79 ± 12.75 bpm (95% LoA 24.20, -25.79) 
compared to ECG during lower (<133 bpm) ECG/true heart rate conditions (e.g. low intensity 
exercise) (Table 3, Figure 18). 

 
Figure 17. Relationship between time-synced ECG and PurePulse Tracker heart rate during high ECG-measured heart rate 
range (<133 bpm) 

 

 
Figure 18. Bland-Altman plot indicating mean difference in heart rate detection between the PurePulse Trackers and ECG 
criterion measure. Mean bias and limits of agreement (95% LoA) are shown. 
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Parameter 
Aggregate Data 

(n=259,478) 

Data above ECG HR 
>132bpm 

(n=131,531) 

Data below ECG HR 
<133bpm 

(n=127,947) 

PurePulse Trackers Mean HR 
(bpm ± SD) 

124.13 ± 28.97* 143.80 ± 21.56* 103.91 ± 20.45* 

ECG Mean HR 
(bpm ± SD) 

133.02 ± 32.88 160.57 ± 16.74 104.70 ± 17.96 

Mean Absolute Difference 
(bpm ± SD) 

13.94 ± 12.08 19.22 ± 14.04 8.51 ± 9.02 

Mean Percent Difference 
(% ± SD) 

10.74 ± 12.08 13.14 ± 14.04 8.28 ± 9.02 

Correlation (r) 0.88^ 0.37^ 0.79^ 

Mean Bias 
(bpm ± SD) 

-8.89 ± 19.67 -16.77 ± 21.89 -0.79 ± 12.75 

95% Limits of Agreement 
(Upper, Lower) 

29.66, -47.44 26.13, -59.67 24.20, -25.79 

Standard Error of the 
Estimate (SEE) 

17.19 20.04 12.62 

^ Significant (p<0.001) correlation 
* Significantly (p<0.001) different than ECG 

Table 3. Summary of heart rate comparison data between PurePulse Trackers and ECG.  

 

E.4. Manually Recorded Data 

As a secondary method of data acquisition, heart rates were manually recorded from the device/watch 
interface and mobile monitors linked to the devices, including ECG, each minute of testing. Tables 4-6 
below include the results for Charge HR, Surge and combined (i.e. PurePulse Trackers), respectively, 
with and without null data (i.e. “--“ readings) included in the analysis.  Where included, the null readings 
were interpreted as a heart rate of 0 bpm.  
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The results for the Charge HR are reflected in the chart below. 

Parameter 

Aggregate 
Data w/ Null 

Data 
(n=2,795) 

Aggregate 
Data w/o Null 

Data 
(n=2,711) 

Data above 
ECG HR 

>132bpm w/ 
Null Data 

Data above 
ECG HR 

>132bpm w/o 
Null Data 

Data below 
ECG HR 

<133bpm w/ 
Null Data 

Data below 
ECG HR 

<133bpm w/o 
Null Data 

Charge HR  
Mean HR 
(bpm ± SD) 

123.24 ± 36.75* 127.24 ± 30.11* 145.50 ± 31.35* 149.75 ± 19.37* 100.57 ± 26.58* 103.87 ± 19.66 

ECG  
Mean HR 
(bpm ± SD) 

133.42 ± 33.70 133.32 ± 33.58 162.00 ± 17.32 161.74 ± 17.19 104.33 ± 17.55 104.30 ± 17.61 

Mean Absolute  
Difference 
(bpm ± SD) 

14.01 ± 34.26 10.21 ± 10.02 18.24 ± 33.60 13.79 ± 11.30 9.70 ± 34.91 6.55 ± 8.32 

Mean Percent  
Difference 
(% ± SD) 

13.62 ± 34.26 7.85 ± 10.02 14.54 ± 33.60 9.13 ± 11.30 12.69 ± 34.91 6.54 ± 8.32 

Correlation (r) 0.69^ 0.88^ 0.25^ 0.53^ 0.61^ 0.86^ 

Mean Bias 
(bpm ± SD) 

-10.18 ± 27.85 -6.27 ± 15.70 -16.49 ± 31.88 -11.99 ± 17.87 -3.76 ± 21.18 -0.42 ± 10.22 

95% Limits of  
Agreement 
(Upper, Lower) 

44.39, -64.76 24.50, -37.03 46.00, -78.98 23.04, -47.01 37.76, -45.28 19.61, -20.46 

Standard Error  
of the Estimate  
(SEE) 

24.37 15.69 16.80 14.61 13.96 9.13 

^ Significant (p<0.001) correlation 
* Significantly (p<0.05) different than ECG 

Table 4. Summary of heart rate comparison manually recorded data between Fitbit Charge and ECG.  
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The results for the Surge are reflected in the chart below. 

Parameter 

Aggregate 
Data w/ Null 

Data 
(n=2,795) 

Aggregate 
Data w/o Null 

Data 
(n=2,711) 

Data above 
ECG HR 

>132bpm w/ 
Null Data 

Data above 
ECG HR 

>132bpm w/o 
Null Data 

Data below 
ECG HR 

<133bpm w/ 
Null Data 

Data below 
ECG HR 

<133bpm w/o 
Null Data 

Surge  
Mean HR 
(bpm ± SD) 

117.24 ± 36.13* 121.81 ± 28.26* 133.17 ± 33.67* 141.50 ± 22.20* 101.01 ± 22.59* 102.64 ± 18.74 

ECG  
Mean HR 
(bpm ± SD) 

133.42 ± 33.70 132.63 ± 33.71 162.00 ± 17.32 161.90 ± 17.21 104.33 ± 17.55 104.13 ±17.54 

Mean Absolute  
Difference 
(bpm ± SD) 

19.63 ± 38.18 14.40 ± 13.13 30.21 ± 46.26 21.88 ± 16.03 8.86 ± 25.30 7.12 ± 7.68 

Mean Percent  
Difference 
(% ± SD) 

18.09 ± 38.18 10.99 ± 13.13 25.88 ± 46.26 14.99 ± 16.03 10.16 ± 25.30 7.10 ± 7.68 

Correlation (r) 0.52^ 0.79^ 0.13^ 0.28^ 0.63^ 0.84^ 

Mean Bias 
(bpm ± SD) 

-16.19 ± 34.30 -10.82 ± 20.70 -28.82 ± 41.23 -20.40 ± 24.03 -3.32 ± 17.80 -1.49 ± 10.34 

95% Limits of  
Agreement 
(Upper, Lower) 

51.04, --83.42 29.75, -51.38 51.98, -109.63 26.70, -67.50 31.56, -38.20 18.78, -21.75 

Standard Error  
of the Estimate  
(SEE) 

28.80 20.64 17.19 16.54 13.60 9.53 

^ Significant (p<0.001) correlation 
* Significantly (p<0.05) different than ECG 

Table 5. Summary of heart rate comparison manually recorded data between Fitbit Surge and ECG.  
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The results for the PurePulse Trackers combined are reflected in the chart below. 

Parameter 

Aggregate 
Data w/ Null 

Data 
(n=5,590) 

Aggregate 
Data w/o Null 

Data 
(n=5,401) 

Data above 
ECG HR 

>132bpm w/ 
Null Data 

Data above 
ECG HR 

>132bpm w/o 
Null Data 

Data below 
ECG HR 

<133bpm w/ 
Null Data 

Data below 
ECG HR 

<133bpm w/o 
Null Data 

PurePulse 
Mean HR 
(bpm ± SD) 

120.24 ± 36.56* 124.45 ± 29.32* 139.34 ± 36.28* 145.69 ± 21.21* 100.79 ± 24.66* 103.25 ± 19.20 

ECG  
Mean HR 
(bpm ± SD) 

133.42 ± 33.69 132.98 ± 33.65 162.00 ± 17.32 161.82 ± 17.20 104.33 ± 17.55 104.21 ± 17.57 

Mean Absolute  
Difference 
(bpm ± SD) 

16.82 ± 36.34 12.29 ± 11.77 24.23 ± 40.81 17.77 ± 14.14 9.28 ± 30.51 6.84 ± 8.01 

Mean Percent  
Difference 
(% ± SD) 

15.86 ± 36.34 9.41 ± 11.77 20.21 ± 40.81 12.01 ± 14.14 11.42 ± 30.51 6.82 ± 8.01 

Correlation (r) 0.60^ 0.83^ 0.18^ 0.39^ 0.62^ 0.85^ 

Mean Bias 
(bpm ± SD) 

-13.18 ± 31.38 -8.53 ± 18.50 -22.66 ± 37.36 -16.13 ± 21.54 -3.54 ± 19.56 -0.96 ± 10.29 

95% Limits of  
Agreement 
(Upper, Lower) 

48.32, -74.69 27.72, -44.79 50.56, -95.88 26.09, -58.34 34.80, -41.88 19.21, -21.13 

Standard Error  
of the Estimate  
(SEE) 

26.87 18.46 17.05 15.87 13.82 9.34 

^ Significant (p<0.001) correlation 
* Significantly (p<0.05) different than ECG 

 

E.5. Charge HR vs. Surge 

E.5.1. Aggregate Data: When examining all time-synced Surge and Charge HR heart rate data in 
aggregate (n= 113,994 pairs), there was a significant (p<0.001) and moderately strong positive 
correlation between the two trackers (r=0.85) (Table 4, Figure 19).  The mean HR from the 
Charge HR (126.90 ± 29.60 bpm) significantly (p<0.001) differed from Surge (121.62 ± 27.50 
bpm) (discrepancy of 7.93 ± 10.09% or 10.00 ± 10.09 bpm) (Table 4).   
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Figure 19. Relationship between time-synced Fitbit Charge HR and Fitbit Surge heart rate. 

E.5.2. HR Data above mean combined HR (>124 bpm): When examining all time-synced Surge 
and Charge HR heart rate data above the combined average of 124 bpm (average of heart rate 
values across all PurePulse Tracker heart rate data) (n= 60,292 pairs), there was a significant 
(p<0.001) and weak correlation between the two trackers (r=0.46) (Table 4, Figure 20).  The 
mean HR from the Charge HR (149.48 ± 17.11 bpm) significantly (p<0.001) differed from Surge 
(141.79 ± 18.27 bpm) (discrepancy of 8.66 ± 10.89% or 12.47 ± 10.89 bpm) (Table 4).   

 
Figure 20. Relationship between time-synced Fitbit Charge HR and Fitbit Surge heart rate when data separated above 
average combined heart rate (>124 bpm) 

 

E.5.3. HR Data below mean combined HR (<125 bpm): When examining all time-synced Surge 
and Charge HR heart rate at and below the combined average of 124 bpm (n= 53,702 pairs), 
there was a significant (p<0.001) and moderate correlation between the two trackers (r=0.76) 
(Table 4, Figure 21).  The mean HR from the Charge HR (101.55 ± 17.76 bpm) significantly 
(p<0.001) differed from Surge (98.98 ± 16.17 bpm) (discrepancy of 7.11 ± 9.04% or 7.23 ± 9.04 
bpm) (Table 4).   
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Figure 21. Relationship between time-synced Fitbit Charge HR and Fitbit Surge heart rate when data separated below 
average combined heart rate (<125 bpm) 

Parameter 
Aggregate Data 

(n=113,994) 

Data above combined avg. 
HR >124bpm 

(n=60,292) 

Data below combined avg. 
HR <125bpm 

(n=53,702) 

Charge HR Mean HR 
(bpm ± SD) 

126.90 ± 29.60* 149.48 ± 17.11* 101.55 ± 17.76* 

Surge HR 
(bpm ± SD) 

121.62 ± 27.50 141.79 ± 18.27 98.98 ± 16.17 

Mean Absolute Difference 
(bpm ± SD) 

10.00 ± 10.09 12.47 ± 10.89 7.23 ± 9.04 

Mean Percent Difference 
(% ± SD) 

7.93 ± 10.09 8.66 ± 10.89 7.11 ± 9.04 

Correlation (r) 0.85^ 0.46^ 0.76^ 

^ Significant (p<0.001) correlation 
* Significantly (p<0.001) different than Surge HR 

Table 6. Summary of heart rate comparison data between Charge HR and Surge.  

 

F. INTERPRETATION OF RESULTS   

 When examining the data in aggregate (n=127,215), the Charge HR failed to meet previously 
established validity criteria for heart rate monitors (SEE ≤ 5 bpm, r ≥ 0.90, and mean bias < 3 bpm).  
Although we observed a moderately strong correlation (r=0.85) between the Charge HR and ECG, there 
was a statistically significant (p<0.001) 9.5% (12.2 bpm) discrepancy between the Charge HR and ECG 
with the Charge HR exhibiting an average bias of -6.1 bpm (SEE= 15.9). This was a non-systematic bias 
based on the relatively wide limits of agreement (95% LoA 28.63, -40.81) (i.e. very sporadic difference 
scores), and therefore, both methods may not be used interchangeably for the measurement of heart 
rate. The LoA also suggests that the Charge HR trends towards an underestimation of heart rate.  This 
inaccuracy is much more prominent when assessing validation among data pairs above the mean ECG 
heart rate (~132 bpm) compared to below.  During these “high” heart rate conditions (e.g. assumingly 
moderate to high intensity exercise), the Charge HR demonstrated a weak relationship and extremely 
poor agreement with ECG (r= 0.48, mean difference= 10.4% or 15.5 bpm, SEE=17.6, mean bias= -12.5 
bpm, 95% LoA 24.9, -49.9).  However, it must be noted, that during lower ECG-based heart rate 
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conditions (e.g. rest to low intensity exercise), only one out of the three established validity criteria were 
met (r= 0.78, mean bias= 0.36 bpm, SEE=13.35).  Moreover, despite a relatively small mean bias, the 
wide limits of agreement (95% LoA 26.7, -26.0) indicate that even during rest to relatively light physical 
activity, the Charge HR may not be utilized interchangeably with ECG for the measurement of heart rate.   

 The Surge presented with weaker correlation (r=0.77) and less agreement (mean bias= -11.6 
bpm, 95% LoA 29.6, -52.8, SEE= 17.8) to ECG than the Charge HR when examining the entire data set 
(n=132,263).  Additionally, the 12.0% (15.6 bpm) discrepancy between Surge and ECG was statistically 
significant (p<0.001).  The Bland-Altman Plot for the aggregate data set reflect not only large 
underestimation by the Surge, but wide limits of agreement.  Thus, the Surge may not be considered 
interchangeable with ECG for the measurement of heart rate.  As with Charge HR, we observed an 
increased level of inaccuracy with the Surge during physical activities eliciting higher ECG heart rates (i.e. 
>132bpm).  The extremely weak correlation (r= 0.26) together with the large mean bias (= -20.8 bpm), 
and high SEE (=21.14) strongly suggest the Surge to be highly inaccurate during elevated physical 
activity.  The Surge appeared to perform better during conditions corresponding to lower ECG heart rates 
based on a marginal average bias (= -1.9 bpm).  However, other validity criteria were not met and thus 
may not be considered valid even during rest to light physical activity.  

When examining both PurePulse Trackers in combination, the correlation (r-value), mean bias, 
and SEE also failed to meet validation criteria for heart rate monitors.  As with each tracker analyzed 
separately, the combined data demonstrate compromised accuracy especially during higher intensities of 
exercise (>132 bpm). 

The manually recorded data, as presented in Tables 4-6, adds further support to the results 
derived from the analysis of data acquired through the primary method of acquisition.  That is, the results 
of manually recorded data strongly corroborate the results of the data obtained through the primary 
acquisition method.  The manual approach to data collection, although not as sophisticated as the 
primary method, adds practical value to the overall findings given that consumers acquire heart rate data 
through similar methods (i.e. reading the value provided in real time through the watch interface).  On the 
basis of these corroborating results, it is with strong scientific reasoning that it can be concluded that the 
Fitbit Charge HR and Surge fail to provide even reasonably accurate and reliable heart rate 
measurements.   

Furthermore, a comprehensive comparison between both PursePulse Trackers (Section E.5) 
demonstrates considerable inconsistencies between the devices. This is surprising and concerning. The 
two Fitbit models purportedly incorporate the same PurePulse™ sensor technology for heart rate 
detection.  And yet there were statistically significant discrepancies and a very imperfect correlation 
between the two models that were simultaneously recording the same heartbeat.  It is reasonably 
assumed that both devices would yield similar heart rate values per given time point producing a near-
perfect to perfect correlation (e.g. r= 1.00).  However, the results from our analysis indicated only a 
moderately-strong correlation (r=0.85) which, in fact, weakened with increasing physical effort (r=0.46).  
This discrepancy in heart rate detection between the two devices with the same optical sensor technology 
further substantiates the inaccuracies reflected by the validation data and further confirms the failure of 
the PurePulse Trackers to accurately and consistently record heart rate data.     

 

G. CONCLUDING STATEMENT 

With strong scientific reasoning, the PurePulse™ technology embedded in the Fitbit optical 
sensors does not accurately record heart rate, and is particularly unreliable during moderate to high 
intensity exercise.  The relatively weak correlations along with high biases and errors (i.e. poor agreement 
to ECG) reveal the significant limitations of PurePulse™ for biometric monitoring during exercise; 
although moderately better performance was observed during resting conditions.  The devices are also 
inconsistent, as can be reasonably inferred from the notable discrepancies between Fitbit devices 
simultaneously measuring the heart rate.  Moreover, disruptions to continuous heart rate detection in both 
Fitbit devices were quite common during testing periods based on manually recorded data.  Although the 
factors underlying the observed inaccuracies extend beyond the scope of this study, it may be speculated 
that the current algorithms for heart rate estimation lack proper sophistication and sufficient data support 
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to control for the multitude of confounding factors associated with PPG-based heart rate detection.  
Overall, the results of this investigation demonstrate that the PurePulse™ technology integrated in Fitbit’s 
heart rate monitoring devices is not a valid method for heart rate measurement, and cannot be used to 
provide a meaningful estimate of a user’s heart rate.   
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2. Jo E. The effects of intersession recovery supplementation of MusclePharm GAINZTM on the metabolic, 

morphometric, and performance adaptations to an 8-week high-volume resistance training program. (in 
progress) 
 

3. Galpin A, Bagley J, Jo E, and McLeland K.  Influence of lifelong endurance training on health, fitness, and 
performance variables: a middle-aged monozygous twin case study. (in progress) 

 
4. Jo E. and Fischer M. The effects of a two-week nitrate supplementation loading phase on time trial performance 

and muscle oxygenation using near infrared spectroscopy. (completed) 
 

5. Liang M, Jo E, Spalding T, and Moustafa M. Effects of whole-body vibration training on bone density and bending 
strength in premenopausal women. (in progress) 

 
6. Jo E, Osmond A, and Wong A. The effects of pre-exercise protein or carbohydrate consumption on metabolic 

rate and substrate oxidation after a bout of high-volume resistance exercise. (completed) 
 

7. Jo E. and Dolezal BA. Validation of the Basis Peak™ Smart Watch. (completed) 
 

8. Jo E, Directo D, Keong J, Wong M, Higuera D, and Osmond A. The acute effects of accommodating elastic 
resistance on electromyographic activity during the back squat, bench press, and deadlift exercises. (in 
preparation) 

 
9. Jo E. A single-blinded randomized, controlled study of the effects of stretch refle air on flexibility and posture. 

(in preparation) 
 

10. Liang M, Jo E, Gavin J, and Kwoh Y-L. Low body mass index and osteoporosis risk in young females. (in 
preparation) 
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11. Lee S-R, Grant SC, Jo E, Khamoui AV, Kim J-S. The effects of conjugated linoleic acid and omega-3 
polyunsaturated fatty acid administration on age-related muscle loss in sedentary or resistance trained mice 
(in preparation) 
 

12. Jo E, Arjmandi B, Cain A, Khamoui AV, Kim D-H, Ormsbee MJ, Prado CM, Smith D, Snyder K, Yeh M-C, and 
Kim J-S.  A single-center evaluation of a clinical proprietary hypocaloric treatment for morbid obesity. (in 
review) 
 

13. Zourdos MC, Jo E, Khamoui AV, Park B-S, and Kim J-S. The effects of a sub-maximal warm-up on endurance 
performance in trained male runners during a 30-minute time trial. (in review) 
 

14. Zourdos MC, Klemp A, Dolan C, Quiles JM, Schau KA, Jo E, Helms E, Esgro B, Duncan S, Garcia Merino S, and 
Blanco R. Novel resistance training-specific rating of perceived exertion scale measuring repetitions in reserve. 
Journal of Strength and Conditioning Research. (1): 267-75 (2016) 
 

15. Jo E, Kim J-S, Ormsbee MJ, Prado CM, and Khamoui AV. The physiological basis for weight recidivism 
following severe caloric restrictive diet therapies: A molecular rationale for exercise- and nutrition-based 

treatment optimization. Journal of Advanced Nutrition and Human Metabolism. (in press) (2016) 
 

16. Jo E, Lewis K, Higuera D, Hernandez J, and Osmond A.  Dietary caffeine and polyphenol supplementation 
enhances overall metabolic rate and lipid oxidation at rest and after a bout of sprint interval exercise. Journal 
of Strength and Conditioning Research (in press) (2015) 
 

17. Zourdos MC, Dolan C, Quiles J, Klemp A, Jo E, Loenneke JP, Blanco R, and Whitehurts M.  Efficacy of daily 

1RM training in well-trained powerlifters and weightlifters. Nutricion Hospitalaria (in press) (2015) 
 

18. Zourdos MC, Jo E, Khamoui AV, Lee S-R, Park B-S, Kim J-S. Modified daily undulating periodization model 
produces greater performance than a traditional configuration in powerlifters. Journal of Strength and 
Conditioning Research (in press) (2015) 
 

19. Zourdos MC, Klemp AK, Dolan C, Quiles JM, Schau KA, Jo E, Helms E, Esgo B, Merino SG, Blanco R.  Novel 

resistance training-specific RPE scale measuring repetitions in reserve and corresponding velocities. Journal of 
Strength and Conditioning Research (in press) (2015) 

 
20. Lee S-R, Khamoui AV, Jo E, Park B-S, Zourdos MC, Panton LB, Ormsbee MJ, and Kim J-S. Effects of chronic 

high fat feeding on skeletal muscle mass and function in middle-aged mice. Aging Clinical and Experimental 
Research (in press) (2015) 

 
21. Kim J-S, Zourdos MC, Henning PC, Jo E, Khamoui AV, Lee S-R, Park Y-M, Naimo M, Nosaka K. The repeated 

bout effect in muscle-specific exercise variations. Journal of Strength and Conditioning Research (in press) 
(2015) 
 

22. Feresin R, Johnson S, Elam EL, Jo E, Arjmandi BH, Hakkak R. Effects of obesity on bone mass and quality in 
ovariectomized female zucker rats. Journal of Obesity. 2014(690123) (2014) 

 
23. Huang C-J, Zourdos MC, Jo E, Ormsbee MJ. Influence of Physical Activity and Nutrition on Obesity-related 

Immune Function. The Scientific World Journal. 2013(752071) (2013) 
 

24. Kim J-S, Park Y-M, Lee S-R, Masad IS, Khamoui AV, Jo E, Park B-S, Arjmandi BH, Panton LB, Lee W-J, Grant 
SC. Beta-Hydroxy-Beta-Methylbutyrate did not enhance high intensity resistance training-induced 

improvements in myofiber dimensions and myogenic capacity in aged female rats. Molecules and Cells. 34(5): 

439-48 (2012)  
 

25. Kim J-S, Khamoui AV, Jo E, Park B-S, Lee W-J. Beta-Hydroxy-Beta-Methylbutyrate as a countermeasure for 
cancer cachexia: A cellular and molecular rationale. Anti-Cancer Agents in Medicinal Chemistry. 13(8) (2012)  

 
26. Jo E, Lee S-R, Park B-S, Kim J-S. Potential mechanisms underlying the role of chronic inflammation in the 

atrophy of aging muscle. Aging Clinical Experimental Research. 24(5): 412-422 (2013) 
 

27. Wilson JM, Marin PJ, Duncan N, Jo E, Loenneke JP, Miller A, Brown LE. Meta-Analysis of post activation 
potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. 
Journal of Strength and Conditioning Research. 27(3): 854-9 (2013) 
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28. Wilson JM, Loenneke JP, Jo E, Wilson GJ, Zourdos MC, Kim J-S. A brief review: The effects of endurance, 
strength, and power training on muscle fiber shifting. Journal of Strength and Conditioning Research. 26(6): 
1724-1729 (2012) 

 

29. Jo E, Judelson DA, Brown LE, Coburn JW, Dabbs N. Influence of Rest Duration Following a Potentiating 
Stimulus on Muscular Power. Journal of Strength and Conditioning Research. 24(2): 343-347 (2009) 

 

BOOK CHAPTERS 

 
1. Brown LE, Jo E, Khamoui AV. Test Administration and Interpretation. In: Conditioning for Strength and 

Human Performance 2nd Edition. Chandler TJ, Brown LE (Eds.) Philadelphia, PA: Lippincott Williams & Wilkins, 
2010 

 

LAY PUBLICATIONS 

 
1. Dacuma M and Jo E (interview). How to Fall in Love with your Workout (and Ditch One you Hate). Brit+Co, 

November 8, 2015.  www.brit.co/find-perfect-workout 
 

2. Jo E, Ormsbee MJ. Yes or No? The Final Answer on Nitric Oxide (NO) Supplements. Sports Nutrition Insider, 

October 24, 2011. http://sportsnutritioninsider.insidefitnessmag.com/2631/yes-or-no-the-final-answer-on-
nitric-oxide-no-supplements  
 

3. Khamoui AV, Jo E, Brown LE. Postactivation Potentiation and Athletic Performance. NSCA, Hot Topics Series, 
September 24, 2009.  http://www.nsca.com/HotTopic/download/Postactivation%20Potentiation.pdf 
 

ABSTRACTS / FORMAL PRESENTATIONS 

 
1. Lewis K, Directo D, Dolezal B, Fischer M, Higuera D, Osmond A, Wes R, Wong M, and Jo E. Validation of 

wearable multi-sensor biofeedback technology for heart rate tracking.  NSCA National Conference, New 
Orleans, LA, June 6-9, 2016 
 

2. Higuera D, Lewis K, Directo D, Osmond A, Wong M, and Jo E. The acute effects of a caffeine and polyphenolic 
compound on anaerobic performance and energy expenditure following high intensity interval exercise. NSCA 
National Conference, New Orleans, LA, June 6-9, 2016 

  
3. Bathgate K, Bagley J, Jo E, Segal N, Brown L, Coburn J, Gulick C, Ruas C, and Galpin A.  Physiological profile 

of monozygous twins with 35 years of differing exercise habits.  NSCA National Conference, Boston, MA, June 

6-9, 2016 
 

4. Meeks L, Reynaga A, Jo E, Wein MA, Worland C, Burns-Whitemore B. The effects of perdometer-metered 
walking on body composition, blood glucose, diet alterations, blood pressure, and waist-to-hip ratios in 
college-aged participants: A pilot study. Experimental Biology, San Diego, CA, April 3, 2016 
  

5. Jo E, Ormsbee MJ, Cain A, Snyder K, Elam M, Yeh M-C, Worts P, Khamoui AV, Kim D-H, Prado CM, Smith D, 

Brown AF, Kim J-S. The clinical application of periodized resistance training during a 12-week hypocaloric 
treatment for obesity. 2015 ACSM Southwest Chapter Annual Meeting, Costa Mesa, CA, October 16, 2015  
 

6. Wong M, Jo E, Cain A, Kim J-S. A single-center evaluation of a proprietary hypocaloric treatment for morbid 
obesity. 2015 ACSM Southwest Chapter Annual Meeting, Costa Mesa, CA, October 16, 2015  

 
7. Higuera D, Lewis K, Directo D, Osmond A, Wong M, and Jo E. The acute effects of caffeine and polyphenol 

supplementation on metabolic and fat oxidation rate at rest and following a bout of sprint interval exercise. 
2015 ACSM Southwest Chapter Annual Meeting, Costa Mesa, CA, October 16, 2015  
 

8. Osmond A, Higuera D, Lewis K, and Jo E. The acute effects of a caffeine and polyphenolic compound on 
metabolic rate and substrate oxidation at rest and following a bout of sprint interval exercise. 2015 CPP 
College of Science Research Symposium, May 29, 2015 

 
9. Wong M and Jo E.  A single-center evaluation of a proprietary hypocaloric treatment for morbid obesity. 2015 

CPP College of Science Research Symposium, May 29, 2015 
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10. Jo E, Ormsbee MJ, Cain A, Snyder K, Elam M, Yeh M-C, Worts P, Khamoui AV, Kim D-H, Prado CM, Smith D, 
Brown AF, and Kim J-S.  The clinical application of periodized resistance training during a 12-week hypocaloric 
treatment for obesity.  2015 ACSM National Conference, San Diego, CA, May 29, 2015 
 

11. Khamoui AV, Kim D-H, Yeh M-C, Park B-P, Oh S-L, Elam ML, Worts PR, Jo E, Myers CM, Arjmandi BH, Salazar 
G, McCarthy DO, and Kim J-S.  Aerobic and resistance training effects on skeletal muscle plasticity in colon-26 
tumor-bearing mice. 2015 ACSM National Conference, San Diego, CA, May 29, 2015 
 

12. Gavin JM, Kwoh N, Jo E, and Liang MTC. Low body mass index affects bone health in young women. 2015 
ACSM National Conference, San Diego, CA May 29, 2015, May 29, 2015 
 

13. Zourdos MC, Dolan C, Quiles JM, Klemp A, Blanco R, Krahwinkel AJ, Goldsmith JA, Jo E, Loenneke JP, and 
Whitehurst M. Efficacy of daily 1RM squat training in well-trained lifters: Three case studies. 2015 ACSM 
National Conference, San Diego, CA, May 29, 2015 
 

14. Yeh M-C, Jo E, Worts P, Cain A, Elam M, Khamoui AV, Kim D-H, Ormsbee MJ, Prado CM, Smith D, Snyder K, 
and Kim J-S.  The clinical application of periodized resistance training during a 12-week hypocaloric treatment 

for obesity. 2015 ACSM Southeast Chapter Annual Meeting, Jacksonville, FL, February 12-14, 2015.  
 

15. Dolan C, Quiles JM, Klemp A, Schau KA, Esgro B, Jo E, and Zourdos MC.  Evaluating squat attempt velocities 
of collegiate and open powerlifters as a marker of performance and indicator of success during competition.  
NSCA National Conference, Las Vegas, NV, July 9-12, 2014.  
 

16. Klemp A, Dolan C, Quiles JM, Schau KA, Esgro B, Jo E, and Zourdos MC.  The usefulness of average velocity 

of opening deadlift attempts in open and collegiate powerlifters during competition as a predictor of 
performance. NSCA National Conference, Las Vegas, NV, July 9-12, 2014.  

 
17. Jo E, Cain A, Prado CM, Ormsbee MJ, Arjmandi B, Snyder K, Smith D, Khamoui AV, Yeh M-C, Kim D-H, Park 

B-S, Oh S-L, and Kim J-S.  A single-center evaluation of a proprietary hypocaloric treatment for morbid 
obesity. Annual Meeting, ACSM, Orlando, FL, May 27-31, 2014.  
 

18. Oh S-L, Lee S-R, Khamoui AV, Jo E, Park B-S, Ormsbee MJ, Kim D-H, Yeh M-C, and Kim J-S.  Effects of 
CLA/n-3 and resistance training on muscle quality in middle-aged mice during high-fat diet.  Annual Meeting, 
ACSM, Orlando, FL, May 27-31, 2014.  

 

19. Zourdos MC, Jo E, Khamoui AV, Park B-S, Lee S-R, Panton LB, Ormsbee MJ, Thomas D, Ward E, Contreras RJ, 
and Kim J-S.  Novel daily undulating periodization model produces greater performance gains than a 

traditional configuration in powerlifters.  Annual Meeting, ACSM, Indianapolis, IN, May 30, 2013. 
 
20. Park B-S, Henning PC, Khamoui AV, Jo E, Lee S-R, Zourdos MC, Kim D-H, Yeh M-C, and Kim J-S.  HMB 

attenuates a loss of myofiber cross-sectional area during prolonged exercise with calorie restriction by 
Enhancing Regenerative Capacity. Experimental Biology, Boston, MA, April 20-24, 2013. 
 

21. Lee S-R, Jo E, Khamoui AV, Park B-S, Zourdos MC, Grant SC, and Kim J-S.  Fatty Acid and Resistance Exercise 

Administration Improve Muscle Wasting by Impaired Myogenic Capacity in High Fat Diet-Fed Mice. 
Experimental Biology, Boston, MA, April 20-24, 2013.  

 
22. Zourdos MC, Jo E, Khamoui AV, Park B-P, Lee S-R, Panton LB, Contreras RC, Ormsbee MJ, Wilson JM, and 

Kim J-S. Time course of hormonal responses with two different models of daily undulating periodization in 
trained powerlifters. Annual Meeting, SEACSM, Greenville, SC, February 14-16, 2013. 

 

23. Jo E, Zourdos MC, Wilson JM, Nosaka K, Lee S-R, Naimo M, Henning PC, Park Y-M, Khamoui AV, Park B-P, 
Panton LB, and Kim J-S. Varying muscle-specific exercise between consecutive training sessions does not 
diminish the repeated bout effect. Annual Meeting, ACSM, San Francisco, CA, May 29-June 2, 2012. 
 

24. Zourdos MC, Khamoui AV, Jo E, Park B-P, Lee S-R, Panton LB, Contreras RC, Ormsbee MJ, Wilson JM, and 
Kim J-S. Changes in maximal strength with two different models of daily undulating periodization in trained 

powerlifters. Annual Meeting, ACSM, San Francisco, CA, May 29-June 2, 2012. 
 

25. Lee S-R, Khamoui AV, Jo E, Park B-P, Zourdos MC, Bakhshalian N, Grant SC, Arjmandi BH, Ormsbee MJ, Kim 
J-S. Anti-catabolic Effects of CLA/n-3 In Resting And Loaded Muscles of High Fat Diet-fed Mice. Annual 
Meeting, ACSM, San Francisco, CA, May 29-June 2, 2012. 
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26. Kim J-S, Lee S-R, Grant SC, Jo E, Khamoui AV, , Park B-P, Zourdos MC, Hooshmand S, Ormsbee MJ, Arjmandi 
BH. Fatty Acid Intake and Exercise Improve Body Composition and Functionality in High Fat Diet-Fed Mice. 
Annual Meeting, ACSM, San Francisco, CA, May 29-June 2, 2012. 

 

27. Wilson JM, Marin PJ, Duncan N, Loenneke JP, Jo E, Zourdos MC, Brown LE. Post Activation Potentiation: A 
Meta-Analysis Examining The Effects Of Volume, Rest Period Length, And Conditioning Mode On Power. Annual 
Meeting, ACSM, San Francisco, CA, May 29-June 2, 2012. 
 

28. Park B-S, Henning PC, Lee S-R, Wilson JM, Park Y-M, Jo E, Khamoui AV, Zourdos MC, and Kim J-S. β -
hydroxy-β-methylbutyrate (HMB) improves myogenesis and maintains strength in male mice during a 6-wk 
catabolic condition. Experimental Biology, Washington D.C, April 8-13, 2011.  

 
29. Lee S-R, Wilson JM, Henning PC, Ugrinowitsch C, Park Y-M, Zourdos MC, Park B-S, Khamoui AV, Jo E, Grant 

SC, Panton LB, and Kim J-S.  Β-hydroxy-β-methylbutyrate (HMB) improves relative grip strength and 
sensorimotor function in middle aged and old rats.  Annual Meeting, ACSM, Baltimore, MD, June 2-5, 2010.   
 

30. Park Y-M, Lee S-R, Wilson JM, Henning PC, Bakhshalian N, Ugrinowitsch C, Zourdos MC, Park B-S, Jo E, 

Khamoui AV, and Kim J-S.  Influence of β-hydroxy-β-methylbutyrate (HMB) on body composition and 
neuromuscular function in old rats during resistance training.  Annual Meeting, ACSM, Baltimore, MD, June 2-

5, 2010.   
 

31. Jo E, Martinez M, Brown LE, Coburn JW, Biagini M, Gochioco M, Judelson DA.  Effects of caffeine on resistance 
exercise performance, mood, heart rate, and rating of perceived exertion.  Annual Meeting ACSM, Baltimore, 
MD, June 2-5 2010. 

 
32. Lee SR, Park YM, Wilson JM, Henning PC, Zourdos MC, Bakhshalian N, Ugrinowitsch C, Park BS, Khamoui A, Jo 

E, Kim JS. Effects of β -hydroxy-β-methylbutyrate (HMB) on body composition in old Sprague-Dawley female 
rats during 10-week resistance training Lee. Annual Meeting, SEACSM, Greenville, SC, February 11-13, 2010.  
 

33. Jo E, Martinez M, Brown LE, Coburn JW, Biagini M, Gochioco M, Judelson DA.  Effects of caffeine on resistance 
exercise performance, mood, heart rate, and rating of perceived exertion.  Annual Meeting, SEACSM, 

Greenville, SC, February 11-13, 2010. 
 

34. Khamoui AV, Brown LE, Tran TT, Uribe BP, Nguyen D, Gochioco MK, Schick EE, Jo E, Coburn JW, Noffal GJ.  
Comparison of methods to calculate vertical jump displacement.  Annual Meeting, SEACSM, Greenville, SC, 

February 11-13, 2010. 
 

35. Khamoui AV, Nguyen D, Uribe BP, Tran T, Jo E, Brown LE, Coburn JW, Judelson DA, Noffal GJ. Relationship 
between Dynamic Kinematics and Isometric Force-Time Characteristics. NSCA National Conference, Las Vegas, 
NV, July 8-11, 2009. 
 

36. Dabbs NC, Khamoui AV, Nguyen D, Uribe BP, Tran T, Jo E, Brown LE, Coburn JW, Judelson DA, Noffal GJ. 
Difference in Vertical Jump Performance by Force Production. NSCA National Conference, Las Vegas, NV, July 
8-11, 2009. 

 
37. Tran T, Faulkinbury K, Stieg J, Khamoui AV, Uribe BP, Dabbs NC, Jo E, Brown LE FNSCA, Coburn JW FNSCA, 

and Judelson DA. Effect of 10 Repetitions of Box Jumps on Peak Ground Reaction Force. NSCA National 
Conference, Las Vegas, NV, July 8-11, 2009. 
 

38. Jo E, Judelson DA, Brown LE, Coburn JW, Dabbs N, Uribe BP. Influence of Rest Duration Following a 

Potentiating Stimulus on Muscular Power in Recreationally Trained Individuals. Annual Meeting, ACSM, Seattle, 

WA, May 27-30, 2009.  
 

CONTRACTS, GRANTS, AND DONATIONS 

 

1. Jo E (PI) and Dolezal BA. Validation of Fitbit Surge and Charge HR Fitness Trackers. Funding Source: Lieff, 
Carbraser, Heimann, and Bernstein. Amount: $10,100 (Funded 1/29/16) 
 

2. Jo E (PI). The effects of a two-week nitrate supplementation loading phase on time trial performance and muscle 
oxygenation using near infrared spectroscopy. Funding Source: Shaklee Corporation. Amount: $7,000 in-kind 
value of supplies (Funded 9/25/15) 
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3. Jo E (PI) and Dolezal BA. Validation of the Basis Peak™ Smart Watch. Funding Source: Basis, an Intel Company.  
Amount: $6,000 in-kind value of supplies (Funded 9/10/15) 
  

4. Jo E (PI). Acquisition of Ultrasonic Imaging System. Funding Source: 2015-2016 SPICE Classroom 

Modernization Program- Cal Poly Pomona. Amount: $15,396.97 (Funded 6/2/15) 
 
5. Jo E (PI).  The effects of intersession recovery supplementation of MusclePharm GAINZTM on the metabolic, 

morphometric, and performance adaptations to an 8-week high-volume resistance training program. Funding 
Source: International Society of Sports Nutrition and MusclePharm Corp. Amount: $10,000+$2,400 in-kind 
value of supplies= $12,400 (Funded 2/25/15)  

 

6. Jo E (PI). A single-blinded randomized, controlled study of the effects of stretch refle air on flexibility and 
posture: a research proposal.  Funding Source: NCC Co. Ltd. Amount: $120,537 (Funded) 

 
7. Liang M, Jo E (Co-PI), Spalding T, and Moustafa M. Effects of whole-body vibration training on bone density and 

bending strength in premenopausal women. Funding Source: NIH-SCORE S3. Amount: $150,000 (not funded) 
 

8. Jo E (PI).  Exercise and Nutrition Research for Obesity Treatment. Funding Source: Kellogg FuTURE Program, 
Cal Poly Pomona Office of Undergraduate Research. Amount: $2,000 (Funded 2/4/2015) 

 
9. Jo E (PI).  Human Health and Performance Research. Funding Source: 2015 Faculty Center for Professional 

Development, Cal Poly Pomona. Amount: $1,000 (Funded 1/15/2015) 
 

10. Jo E (PI). Cal Poly Human Performance and Nutrition Research.  Funding Source: Dymatize Nutrition.  Amount: 

$1,272.23 in-kind value of supplies (Funded 12/2/14) 
 

11. Liang M and Jo E (Co-PI). Low body mass index affects bone health in young females. Funding Source: Research, 
Scholarly and Creative Activities (RSCA) Grant Program, Cal Poly Pomona. Amount: $5,000 (Funded 10/13/15) 

 
12. Jo E (PI). Effects of Thermogenic Supplementation on Muscular Performance during a Bout of High Intensity 

Interval Training and Pre-, Mid- and Post- Exercise Metabolic Rate in Overweight, College-aged Males and 

Females. Funding Source: 2014 Faculty Center for Professional Development, Cal Poly Pomona. Amount: $1,000 
(Funded) 

 
13. Jo E (PI).  The clinical application of periodized resistance training and HMB free acid supplementation during a 

12-week hypocaloric treatment for obesity: A multicenter clinical trial.  Metabolic Technologies Inc. (in review) 
 

14. Jo E (PI; Primary Grant Writer) and Ormsbee MJ. Periodized resistance training and whey protein intake 
during weight-loss treatment.  Funding Agency: National Strength and Conditioning Association Foundation.  
Amount: $10,000 (Funded) 

 
15. Kim JS (PI), Cain AF, Ormsbee MJ, Prado C, Snyder K, Smith D, and Jo E (Co-PI; Primary Grant Writer). The 

independent and combined effects of Programmed resistance training and whey protein supplementation on 
body composition, resting metabolic rate, neuromuscular function, and Biochemical Regulators of lean tissue 

Morphology in clinically obese subjects undergoing weight-loss treatment. Funding Agency: Nestlé HealthCare 
Nutrition.  Amount: ~$120,000 in product support (scored; not funded) 

 
16. Kim JS (PI), Arjmandi BH, Grant SC, and Jo E (Primary Grant Writer).  Efficacy of Anti-Inflammatory Fatty 

Acids in Attenuating Inflammation-Mediated Musculoskeletal Impairments during Lifelong High Fat Diet.  
Funding Agency: USDA. Amount: $500,000 (not funded) 

 

17. Kim JS (PI), Arjmandi BH, Grant SC, Levenson CW, and Jo E (Primary Grant Writer).  Reversing Obesity-
Accelerated Aging: Mechanisms of Diet and Exercise Amount: Funding Agency: NIH-R01. Amount: $1,702,917 
(scored; not funded)   

 
18. Kim JS (PI), Arjmandi BH, Grant SC, and Jo E (Primary Grant Writer).  Efficacy of Anti-Inflammatory Fatty 

Acids in Attenuating Inflammation-Mediated Musculoskeletal Impairments during Lifelong High Fat Diet.  

Funding Agency: USDA. Amount: $500,000 (scored; not funded) 
 

CERTIFICATIONS / LICENSES 

 
International Society of Sports Nutrition 

 Certified Sports Nutritionist (CISSN), 6/17/14 - Current 
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California Department of Public Health, Radiologic Health Branch 

 X-Ray Technician Bone Densitometry Permit (DXA) (#RHP00098002), 8/31/14 - Current 
 

The Foundation of Osteoporosis Research and Education 
 Limited Permit X-Ray Technician, 3/2/14 - Current 

 
National Strength and Conditioning Association                     

 Certified Strength and Conditioning Specialist (CSCS), 11/8/07 - Current                 
 Certified Personal Trainer (CPT), 11/13/04 – Current 

 

American Heart Association                          
 Adult and Child CPR and AED, Current  

 

PROFESSIONAL MEMBERSHIPS 

 
International Society of Sports Nutrition, 1/14 - Current 
American Physiological Society, 6/11 - Current 
American College of Sports Medicine, 6/15/10 - Current 

Southeast Chapter of American College of Sports Medicine, 2/10 - Current 
National Strength and Conditioning Association, 11/13/04 – Current 
 

PROFESSIONAL AND ACADEMIC SERVICES 

 
One More Round Documentary Advisory Board 
Advisory Board Member, Fall 2014-Current 

 
Editorial Review Panel 
NSCA Coach Publication, Summer 2014-Current 
 
Kellogg Honors College Application Reviewer 
California State Polytechnic University, Pomona, Winter 2014 
 

Student Health Advisory Committee 

California State Polytechnic University, Pomona, Winter 2014-Current 
 
International Society of Sports Nutrition (ISSN) West Coast Representative  
International Society of Sports Nutrition, Spring 2014-Current 
 

Invited Peer Reviewer 
Applied Physiology, Metabolism and Nutrition 
Sports Medicine 
NSCA Performance Training Journal 
Journal of Strength and Conditioning Research 
NSCA Coach 
 

College of Human Sciences Graduate Show Case 2012 
Florida State University 
Graduate Student Panel, 10/18/2012 

 
College of Human Sciences Dissertation Award Program  
Florida State University 
Invited Reviewer, 10/2012 

 
Center of Advancing Exercise and Nutrition Research on Aging 
Florida State University 
Graduate Student Assistant 
Founding Student Member, 1/11/2012 - Current 
 

Optimizing Performance: Training and Nutritional Adaptations Symposium 
Florida State University and Florida A&M University 
Organizer, 10/14/2012 
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LABORATORY SKILLS AND ANALYTICAL TECHNIQUES 

 
Analysis of human health and performance 

 Maximal VO2 testing, cardiopulmonary stress testing, and indirect calorimetry using metabolic measurement 
system (ParvoMedics TrueOne) 

 Isokinetic dynamometry using Biodex system  
 Body composition analyses: Hydrodensitometry, multi-site skinfold caliper test, whole body air-displacement 

plethysmography (BODPOD) 
 Cycle ergometry performance analysis using Monark Sports and Medical system 
 Force plate analysis of human performance kinetics 
 Maximal and submaximal graded exercise and strength testing administration 
 Muscle oximetry utilizing NIRS and photoplethysmography 

 
Small animal model research techniques 

 Basic small animal handle and care 
 Administration of exercise and dietary interventions for rodent models 
 Small animal euthanasia and surgical techniques for hindlimb muscle and multi-organ isolation 
 Post-surgery tissue sample treatment, care, and storage 

 In vivo analysis of small animal body composition using dual x-ray absorptiometry 
 In vivo measurement of small animal physical function: muscular contractile properties and sensorimotor 

coordination 

 
Wet laboratory techniques 

 Skeletal muscle immunohistochemistry and histology: Tissue fixation, cryostat operation, Avidin Biotin 
Complex (ABC) staining method, light microscopy, image acquisition, histological analysis (CSA, nuclei and 
protein quantification, etc) 

 Reverse Transcriptase Polymerase Chain Reaction 

 Western Blot 
 RT-PCR and western blot band amplification and densitometric analysis (ChemiDoc and densitometry 

software) 
 Enzyme Linked Immunosorbent Assay (ELISA) 
 Protein assay using BCA method 
 Automated serum analyzer (Sigma) operation 

 Microplate reader (BioRad Model 680 and BioTek) operation 

 General phlebotomy techniques (venipuncture) 
 Blood lactate, glucose, and lipid measurement and analysis 

 

AWARDS AND HONORS 

 
2015 Science Council Club Advisor of the Year 
California State Polytechnic University, Pomona 
 
2015 College of Science Distinguished Teaching Award Finalist 
California State Polytechnic University, Pomona 
 

2014-2015 Cal Poly Pomona Intercollegiate Athletics Recognition of Appreciation 
California State Polytechnic University, Pomona, Department of Athletics 
 

Minority Scholarship 2011 
National Strength and Conditioning Association Foundation 
 
Glenn Society Inductee 2011 

College of Human Sciences, Florida State University 
Recognition of scholarly achievements and outstanding leadership 
 
Outstanding Teaching Assistant Award Nominee 2011 
Program for Instructional Excellence, Florida State University 
University-wide recognition of outstanding performance as teaching assistant 

 
Challenge Scholarship 2010 
National Strength and Conditioning Association Foundation 
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Frances / Ricardo Moreno Scholarship Award 2009  
College of Health and Human Sciences, California State University, Fullerton  
 

Dean’s List 2007-2009 
College of Health and Human Services, California State University, Long Beach 
 
Undergraduate Kinesiology Student of the Year 2006  
Dept. of Kinesiology, College of Health and Human Services, California State University, Long Beach  
 

NON-ACADEMIC PROFESSIONAL EXPERIENCE 

 
Private Strength and Conditioning, Orange County and Los Angeles, CA            
2001-2009 
Private Certified Strength and Conditioning Specialist 

 
Private Personal Training, Orange County and Los Angeles, CA           
2001-2009 
Private Certified Personal Trainer 

 
Michael Seril Fitness, Inc., Whittier, CA                  
2004-2008 

Certified Strength and Conditioning Specialist and Certified Personal Trainer  
 
LA Fitness: Pro Results, La Habra, CA               
2003-2005 
Personal Fitness Trainer / Fitness Manager 
 

Premier Results, Diamond Bar, CA                  
2003-2005 
Personal Fitness Trainer 
 
Body of Change, La Habra, CA                   
2001-2003 

Personal Fitness Trainer  

 

INTERNSHIPS 

 
Care House, Anaheim, CA 

Summer 2009 
 
2 FAST 4 U, Fullerton, CA              
Fall 2007-Spring 2008 
 
YMCA Older Adult Fitness, Long Beach, CA                 
Spring 2005-Summer 2005  

  
Bright Medical Center: Health education courses, Whittier, CA                              
Spring 2005-2007 

 
Seal Beach Boeing, Seal Beach, CA                 
Spring 2005-Summer 2005 
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